The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis.
نویسندگان
چکیده
In bacteria, the Min system plays a role in positioning the midcell division site by inhibiting the formation of the earliest precursor of cell division, the Z ring, at the cell poles. However, whether the Min system also contributes to establishing the precise placement of the midcell Z ring is unresolved. We show that the Z ring is positioned at midcell with a high degree of precision in Bacillus subtilis, and this is completely maintained in the absence of the Min system. Min is therefore not required for correct midcell Z ring placement in B. subtilis. Our results strongly support the idea that the primary role of the Min system is to block Z ring formation at the cell poles and that a separate mechanism must exist to ensure cell division occurs precisely at midcell.
منابع مشابه
The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization
Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rin...
متن کاملCell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-Ring assembly.
The earliest stage in cell division in bacteria is the assembly of a Z ring at the division site at midcell. Other division proteins are also recruited to this site to orchestrate the septation process. FtsA is a cytosolic division protein that interacts directly with FtsZ. Its function remains unknown. It is generally believed that FtsA localization to the division site occurs immediately afte...
متن کاملThe MinCDJ System in Bacillus subtilis Prevents Minicell Formation by Promoting Divisome Disassembly
BACKGROUND Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete ...
متن کاملCytokinesis in bacteria.
Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in t...
متن کاملThe division inhibitor EzrA contains a seven-residue patch required for maintaining the dynamic nature of the medial FtsZ ring.
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 3 12 شماره
صفحات -
تاریخ انتشار 2002